0845 643 64 63

Power BI

How the UNICHAR() DAX Function Enhances Power BI Reports

The UNICHAR() DAX function is a text function that takes a numerical Unicode value and displays its associated character. For example, UNICHAR(128515) will display as:

90% of the information the human brain processes is visual and we process images up to 60,000 times faster than text, so it makes perfect sense to use icons where possible to enhance reports. This scarcely used DAX function opens-up that option.

The below stacked column chart uses Unicode emoticons to enhance the readability of the ‘Genre’ axis labels.

So, how do we achieve this?

To produce this you will need to edit the query. In the ‘Data’ view, right click the relevant table and select “Edit Query”

First, duplicate the existing column you want Unicode characters for (genre in this case). Then use the ‘Replace Values’ option to substitute in the relevant Unicode numbers for each genre.

(this can be hidden from the report view as it contains nothing meaningful).

Next, create a second calculated column that uses a simple measure:

IconColumn = (UNICHAR(UnicodeNumberColumn))

This new ‘Icon’ column can now be used in reports the same way as any other text column.

Note how in the stacked column chart above, the original names have been included, this is good practice for two main reasons. One is clarity, a clown denotes comedy to most users, but could indicate horror to others, including the label removes the ambiguity.

The other reason is due to possible compatibility issues. It is worth pointing out here that the Unicode characters will only display when the character exists in the chosen font. In most cases this will be fine, especially for emoji characters, but just in case there are display issues it is worth including the full label.

Staying with the movie topic, the below chart shows movie ratings both numerically and visually created by a custom measure:

Stars = REPT(UNICHAR(11088), AVERAGE('IMDB 1000'[10 Star Rating]))

A measure that uses the UNICHAR() function will always be a text field and as such, normal formatting applies, in the example above we can set colours to be gold on a black background.

The previous examples do help readability but don’t really add anything meaningful to the report. The below table shows that the UNICHAR() function can add worthwhile content with customisable KPIs by combining it with conditional formatting.

There are 143,859 Unicode characters available, everything from emojis, symbols, shapes and braille patterns to dice and playing cards. Whether you want to offer further insight into your data, enhance the user experience or simply create something sublimely ridiculous, with so many icons at your fingertips, the possibilities are only limited by your imagination.

Further information on the UNICHAR() function can be found here: UNICHAR function (DAX) – DAX | Microsoft Docs
A list of Unicode characters and their respective numerical values can be found here: Huge List of Unicode Characters

How to export more than 30,000 rows of data from Power BI Desktop.

Have you ever wanted to export a table from Power BI Desktop into Excel just to make sure the DAX you’ve written is performing as expected but ran into this error message: “Data exceeds the limit – Your data is too large. Some data sampling may occur”?

Most probably this has occurred because you’ve got more than 30,000 rows of data in your table that you’re trying to export. In the example shown below I’ve actually got 30,001 rows of data – a row containing column headers plus 30,000 rows of actual data.

If I now change the row count in my “Table To Export” table to 29,999 rows of actual data using a simple filter I have no issues exporting the data. This brings the grand total to 30,000 rows (29,999 rows of actual data plus a row containing columns headers).

But what if you really need to export more than 30,000 rows of data? Well there is a way…

Firstly make sure you’ve got DAX Studio installed on your machine.

Now within Power BI Desktop click “View” and then “Performance analyzer”.

This will open a new window pane called “Performance analyzer”.

Now click “Start Recording” and then click “Refresh Visuals”. Next within the Performance analyzer window locate the name of the visualisation which in my case is “Table To Export” and click the small “+” symbol next to it.

Next go ahead and grab the DAX query which has been used to construct the table. Click on the link “Copy query” which will copy the DAX query to your clipboard.

Next you’ll need to launch DAX Studio from within Power BI Desktop.

To do this on the top ribbon in Power BI Desktop click “External Tools” and then click “DAX Studio”.

Now within DAX Studio paste the copied query from your clipboard into the query window.

Next remove the variable which limits the number of rows which will be returned (TOPN) and replace the “EVALUATE” statement with “_DS0Core” as per the snip below.

Next change the output of the query to be executed from “Grid” to “File”.

Finally click the “Run” button and let DAX Studio Export your data containing at least 30,000 rows to a CSV file. Simple!

I hope this helps with any debugging you might need to perform in Power BI Desktop!

Dynamic Date Formats in Power BI

Which date format styles should we use if we are building a report that is being consumed internationally?

Remember, 01/12/2021 is December 1st or January 12th depending in which part of the world it is being read.

The decision may be taken from our hands if there is a company policy in place. If the company is based in the USA, for example, they may choose to use US formatted date fields as a standard for reporting across the entire business, however, if the field needs to be truly dynamic depending on the consumers location, the answer lies in this tool tip:

Explanation of dynamic date formats

There are 2 formats in the selection that are prefixed with an asterisk:

Selection of dynamic date formats
* We shall use ‘General Date’ in the examples throughout this post for reasons explained later

There are 2 variables that the Power BI Service checks when loading reports in the service.

First it will check the language setting of the user account in the service. This is set under ‘Settings >> General >> Language’. There is a dropdown option that acts as both a language and regional setting, this drives how dates are formatted when dynamic date formats are used.

Power BI service language settings

If this is set to ‘Default (browser language)’ the second variable, the browser’s default language setting, will take effect.

In Edge this is set under ‘Settings >> Language’, when multiple languages are set, the topmost one is considered the default.

Language settings in Edge

In Chrome it is set under ‘Settings >> Advanced >> Language’, this uses the same system as Edge where the topmost language is used as default.

Language settings in Chrome

Here is an example of a table loaded in a browser using both English UK and English US:

English UK
English US

This example shows that not only does the format of the date itself change (day and month have switched) but there are also visual connotations to account for. The US format uses a 12-hour clock by default and the addition of the AM/PM suffix changes the column width and drastically alters the readability of the table and potentially the entire report. It is these occurrences we need to be aware of when developing reports for international consumption.

This issue can easily be avoided by using the ‘Auto-size column width’ setting under ‘Column Headers’ on the formatting tab of the visual, or by allowing for the growth when setting manual column widths. (For a great guide on manually setting equal column widths, please read this helpful post by my colleague, Nick Edwards)

Unfortunately, this post comes with a caveat, at the time of writing it would seem there is a bug in Power BI. Remember this from earlier?

Explanation of dynamic date formats
Selection of dynamic date formats

As you can see below, both fields use the UK format of DD/MM/YYYY when the browser language is set to English UK.

Settings set to UK
UK dates

However, when the browser settings are changed to English US, only the *‘General Date’ format has changed, the *’DD/MM/YYYY’ format is still showing in the UK format even though there is an asterisk next to it in the selection list.

Settings set to US
Erroneous mix of US and UK dates

Hopefully once this issue is addressed, the use of regionally dynamic date formats will be available for both long and short formats.

Power BI – Enable Load

In Power BI Power Query there is an option to enable or disable whether a table is loaded into the report. The option ‘Enable load’ can be found by right clicking on the table. Typically, by default, the load is already enabled.

There is also an option ‘Include in report refresh’ which lets a user stop a table from refreshing when they refresh the entire report. This maybe useful for static tables or tables that are large which take a long time to refresh and a user wants to concentrate on how other tables are refreshing.

Once a user disables the ‘Enable load’ option, the table name turns italic which is an easy way for users to determine whether a table will be loaded or not.

After applying these changes, no data has been loaded into the report.

To re-enable the load, jump back into Power Query, right click on the table and ‘Enable load’.

Finally, some scenarios where it might be useful to disable loading a table:
– Disable loading tables in Power Query that were only ever stepping stones to create other tables
– See how removing a table effects your report before deleting it
– Removing a table that might be required again in the future

Power BI Drill Through using Multiple Data Points

A drill through in Power BI allows the reader to see secondary data related to the original page with the context of a specific data point applied, for example, drilling through on sales data can display the demographic information of the relevant customers for those sales.

One limitation of the drill through functionality is that it only allows users to drill through on a single data point. If more than one is selected, the drill through function will be disabled. Using the above example, this means that a reader can drill through to the demographic of the sales of one product at a time, but not a combination of two or three.

You can see this when using a drill through button, the button only works when one data point is selected.

Single data point selected - Button active

If you select multiple points the button is greyed out and if you hover over the it, you get the following tool tip appear:

Multiple data points selected - Button greyed out

“To drill through to [page name], select a single data point from [page name]

Curiously, since native drill throughs on card visualisations were introduced back in September 2020, Power BI considers a card to be a single data point, regardless of the number of filters applied to it.

If you drill through on the card with multiple data points selected, the drill through page will have all of the relevant filters applied.

Select multiple data points and right click the card to drill through
Filters showing both selected data points have been applied

Currently there is no method of getting the button to function with multiple data points selected, even though the above behaviour suggests there is scope to do so. At the time of writing, Microsoft have confirmed that this behaviour is intended functionality for the drill through button.

So to conclude, if you need to allow drill throughs for a multi-select scenario, currently your only option at the moment is to replace Buttons for Cards and perhaps include a tip for the reader to know its there, hopefully this may change in the future.

Tabular Cube Processing Report

I have created a Power BI report which provides detail on the state of processing in a Tabular Cube.
The report uses the cube’s dynamic management views to provide information about the cube’s partitions.

To use the tabular cube processing report, you need to insert the following information:

  • Server
  • Database (Cube Name)

Once entered and assuming the connection is fine you need to accept some native queries. These statements are select statements and will not alter the cube. That should give you a report similar to the one below, I have used an adventure works tabular model as an example.

Click here to download the report

This report is inspired by one I found for general tabular cube documentation by Data Savvy, which I highly recommend. That report includes information on: tables, columns, relationships, measure and security:

Click here to view tabular cube documentation blog post

SSAS Tabular Calculation Groups – avoid using SELECTEDMEASURE or ISSELECTEDMEASURE


There is a very serious limitation in the behaviour of calculation groups when using the SELECTEDMEASURE or ISSELECTEDMEASURE functions, and we recommend not using them. Why? If a user creates their own custom calculations within their Power BI report (or composite model) then the value of SELECTEDMEASURE changes, breaking your calculation group logic.

Let me explain with an example:

In a tabular cube we may look to use calculation groups to apply additional filters when calculating measures. In our example we will be using a retail scenario, with budgets as well as ‘Like for Like’ (LFL) budgets. For those not in retail, LFL represents stores that were also open this time last year. We start with the measure “Budget” with the following definition:

We also have a hidden measure called “Budget LFL” with the following definition:

The measure “Budget LFL” is a variation of the “Budget” measure with additional filters applied at source. We also have a calculation group called “LFL Filter”, this is used to return the hidden “Budget LFL” measure based on the option selected in this filter and has the following definition:

This functionality is demonstrated below where the two visuals from Power BI show the same measure with and without the LFL Filter applied:

No LFL filter applied
LFL filter applied


A problem arises when you try to create a custom measure (in the cube or within a Power BI report) and filter by the calculation group, for example we create a measure called “CustomBudget” which is a copy of the “Budget” measure and has the definition:

Adding this custom measure to the visual shown earlier we can see that the calculation group “LFL Filter” has no affect on the custom measure:

LFL filter applied

This is because the SELECTEDMEASURE() is now [CustomBudget] and not [Budget], therefore the logic in the calculation group doesn’t recognise the selected measure, and therefore doesn’t switch to the LFL measure.


To get around this we move the bulk of the logic from the calculation group to the measure itself. The measure now changes its behaviour by looking at the selected value of the LFL filter, instead of the calculation group managing it centrally:

This is the new definition for the “Budget” measure
This is the new definition for the “LFL Filter” calculation group

We refresh Power BI and find that the results are now as expected, the original and custom measures now match when using the calculation group as a filter:

This is the same visual but using the new logic, now with matching results

Thank you to Darren Gosbell (Twitter | Blog) for the suggestion of this workaround.

Using ConcatenateX in PowerBI to return multiple values.

In this blog post we’ll take a quick look at using ConcatenateX function to view a concatenated string of dates where the max daily sales occurred for a given month.

I came across this function whilst going through the excellent “Mastering DAX 2nd Edition Video Course” by the guys from SQLBI.com. So credit to Marco and Alberto for sharing this.

So how does it work? If we had a list of dates ranging from 01/01/2020 to 31/12/2020 and we wanted to see which days we achieved maximum sales for each given month in a year we could use the ConcatenateX function to return these dates in a single row per month.

As we can see in the screenshot below, the left hand table shows the month of June where we achieved maximum sales for in June on both 18/06/2020 and 25/06/2020 of 99. In the table to the right we can see those two dates presented on a single row for the month of June in the column “What were the max days?”. This was column was created using the ConcatenateX function!

So let us first look at what the maximum daily sales were per month. To do this we’ll use the MAXX function to create “Max Daily Sales”. This returns the maximum daily sales rate achieved for each given month as a single value. So for the month of June this would be 99. The problem with this is we are not sure which days these max sales were achieved on without drilling down into the data.  Was this just one day or was it multiple days? All we can see is a figure of 99.

So let us create a new measure to work out on which days this figure of 99 occurred on.

The variable at point (a) returns a table with a single column which lists all of the unique dates in our Sales_2020 table.

The variable at point (b) returns the max sales for the given filter context in this case month.

The variable at point (c) uses the filter function to filter out only the days where the max sales were achieved by setting the total quantity sold measure to the max daily sales variable. For example in June we achieved max daily sales of 99 on 18/06/2020 and 25/06/2020. Therefore the variable at point (c) would filter out the ListOfDays table variable to just 18/06/2020 and 25/06/2020 only.

If we just had one max sales day per month we could simply return MaxDaysOnly. However we may have multiple days per month where max sales were achieved. Hence we use the ConcatenateX function to create a string of dates.

The variable at point (d) creates a string of concatenated dates separated by the delimiter “,” which can be used against a single row in a table.

Wrapping it all up returns us this table below, which shows us which days max sales were achieved per given month! Pretty cool eh?

Check out https://www.sqlbi.com/articles/mastering-dax-video-course-2nd-edition/ for more information regarding the online DAX course as well as https://twitter.com/marcorus and https://twitter.com/ferrarialberto on Twitter!

Sorting a Power BI table by multiple columns

A common request that is raised by clients is how to sort a table in Power BI by multiple columns, in the same way you can in Excel.
For a while, there was no way (at least no easy way) to do this until the Power BI March 2020 update.

I learnt this tip from the following YouTube video:
Full credit to Dhruvin Shah, check his video out.

Below I have a Power BI table displaying fruit sales, currently unsorted.

To sort the table by Fruit click on the column header Fruit.

The table is now sorted by Fruit in alphabetical order.
To add a secondary sort on Sales, hold the Shift key and click on the column header Sales.

The table is now sorted by
– Fruit name in alphabetical order
– Sales in descending order

Some extras to note:
– There is no limit on the number of columns that can be used to sort a table. Just hold the shift key and keep choosing columns.
– This feature is not available for matrices.
– To switch the sorting from ascending to descending or vice-versa continue to hold shift and click on the column header again.

Power BI Databricks Spark connection error

When querying data from Azure Databricks (spark) into Power BI you may encounter an error: “ODBC:ERROR [HY000] [Microsoft][Hardy] (100) The host and port specified for the connection do not seem to belong to a Spark server. Please check your configuration.

This is usually caused by trying to connect to a ‘Standard’ Databricks instance, but Power BI (and ODBC in general) can only connect to Databricks using a ‘Premium’ pricing tier. You will need to upgrade this to be able to access Databricks/Spark from Power BI.

Another common and similar error when Power BI is querying data from Azure Databricks (spark) is: “ODBC:ERROR [HY000] [Microsoft][DriverSupport] (1170) Unexpected response received from the server. Please ensure the server host and port specified for the connection are correct.

The most likely cause of this error is an invalid server path, as you have to modify the path that Databricks gives you before using it.

In Databricks, open the cluster, and in Advanced Options click on the JDBC/ODBC tab, and copy the JDBC URL. It will look something like this:


All of the sections in red need removing or changing, so it ends up like this:


The username needs to be “token”, and the password needs to be a token, generated from the Databricks portal. Click on the user/silhouette icon on the top right of the screen, User Settings, Generate New Token.

Also when using Databricks, watch out for the type of connection you choose in Power BI, it should be ‘Spark’ not ‘Azure HDInsight Spark’.

Hope this helps!


Power BI Sentinel
The Frog Blog

Team Purple Frog specialise in designing and implementing Microsoft Data Analytics solutions, including Data Warehouses, Cubes, SQL Server, SSIS, ADF, SSAS, Power BI, MDX, DAX, Machine Learning and more.

This is a collection of thoughts, ramblings and ideas that we think would be useful to share.


Alex Whittles
Reiss McSporran
Jeet Kainth
Jon Fletcher
Nick Edwards
Joe Billingham
Microsoft Gold Partner

Data Platform MVP

Power BI Sentinel
Frog Blog Out