0845 643 64 63

Integration Services

Forecasting the Performance of SSIS packages

SQL Server Integration Services (SSIS) packages are used in numerous scenarios for moving data from A to B. Often they are developed and tested against a cutdown, often static, subset of data. One of the problems with this is that yes you’re testing the functionality of the package as it’s being developed, but there’s no way to determine whether the performance will scale up to a full size production environment. This level of testing is more often than not ignored, resulting in packages being deployed to live which just can’t cope with the data volume, bringing down the load process.

We can divide performance checking into two:

  1. Load testing pre deployment
  2. Continual monitoring and projections

It’s vital to undertake performance load testing of packages before they’re deployed, or at least review the source queries and SSIS components and structure to ensure there’s nothing that’s likely to cause an exponentially increasing runtime. There are loads of blog posts about SSIS performance tuning so I won’t go into that here.

What I did want to talk about here was the importance of continual monitoring. A package that runs fine today may grind to a halt in a year’s time if the live data volume continues to increase. How do you check this, and how do you project data growth into the future to predict performance problems that haven’t happened yet?

The first step is to start tracking the time taken to run each package, and store this to a table. As a rule I always build this level of logging into my template packages when I’m defining the SSIS ETL framework. Again, there are heaps of articles on different ways to do this, check out one of Jamie’s gems as a starting point. The key outcome is that you end up with a start time and end time (and hence a duration) of each package every time it runs. If you don’t have any custom logging, you can always hack together the data from the sysssislog table if you’ve enabled it (and I hope you have..!).

Once you have the raw data available, leave the package to run for a month or two and then analyse the results in Excel to perform a simple projection. Just copy the data into Excel in a format similar to this. It doesn’t matter if you have duplicate dates

Date Duration
18/08/2010 17
18/08/2010 16
19/08/2010 17
20/08/2010 18
21/08/2010 17

And then create a scatter chart

Format the X axis and make sure it’s set to be a date. You should end up with a chart similar to this.

Add a trend line to the chart by right clicking on one of the data points and click ‘add trendline’. Hopefully the trendline will be linear so choose that. If your data looks exponential then you really need to re-assess your package urgently!

There’s a nifty feature of Excel trendlines that allows you to forecast the trendline forward by x periods. If you set this to 365 it will project the package duration forward for a year. The reliability of this trendline will increase as the volume of sample data increases. i.e. if you run your packages for 3 months, you’ll be able to make better predictions than if you only run them for 2 weeks.

This clearly shows that although the package is currently taking 24 minutes to run, with the current data growth it will be taking approximately an hour in a year’s time.

When you do this for each package, you can quickly build up a picture of when you’re likely to run into trouble, and use this as justification for development resource to prevent the problems before they happen.

Frog-Blog Out

SQL Server 2008 R2 – PowerPivot and Master Data Services

Purple Frog spent a very interesting day at Microsoft last week, at one of their many events promoting the launch of SQL Server 2008 R2. Rafal Lukewiecki presented an entertaining (as always!) and informative series of talks covering the release, focusing on the enhanced Business Intelligence tools available.

The primary changes to note are

  • Power Pivot – An in memory, client side add-in to Excel, that allows users to create virtual cubes on their desktop and analyse over 100m records of data virtually instantly
  • DAX – A new expression language, designed for non-technical (probably more realistically, semi-technical) users to extend pivot tables and power pivot tables without having to learn MDX
  • Report Components – In a report consisting of a couple of tables, a chart and a few gauges (gauges, sparklines & maps are all new features of SSRS), you can save each element as a component and re-use it in different reports. This should result in much less duplication of work.
  • Report Builder 3 – A thin-client tool allowing end users to create Reporting Services reports. This is a big enhancement over its predecessor s it is finally fully compatible with reports created in the Business Intelligence Development Studio (BIDS), including report components.
  • Master Data Services – A centralised tool and database intended to provide governance of your organisation’s master data (centralised list of products, fiscal calendar, regions etc.).

The enhancements to Reporting Services (SSRS) are very welcome, and should be of huge benefit to anyone either currently using SSRS or considering using it. I firmly believe that there are no comparable web based reporting engines that even come close for SME organisations when looking at the whole picture including cost of implementation, ease of use, flexibility and capability.

Master Data Services as a concept has been around for a long time, but there has never been a tool available to organisations to effectively implement it. This is Microsoft’s first proper stab at delivering a workable solution, and although I’m a big fan of the concept, and have no doubt of its benefit to a SME, I’m yet to be convinced that the tool is ready for a large scale corporate environment. Time will tell how scalable and manageable the system is, and credit has to go to Microsoft for starting the ball rolling.

The most impressive addition is without a doubt PowerPivot. In a nutshell, it’s a user defined OLAP cube wrapped up within Excel 2010, running entirely in memory on a user’s workstation. If you’ve not yet played with it or seen a demo, I’ll try and elaborate for you… Think about loading Excel with 1 million rows, and then imagine sorting and filtering a number of those columns [cue going out to lunch whilst waiting for Excel to catch up]. With PowerPivot, you can sort and filter over 100 million rows of data almost in an instant – it’s very impressive indeed!

That’s the snazzy demo bit, but to reduce it to a glorified spreadsheet is very harsh indeed. It allows a user to import multiple data sources and combine them together into a single dimensional data model, PowerPivot will create your own personal cube, without you having to build a warehouse, without knowing anything about MDX, dimension hierarchies, attribute relationships, granularity etc. etc.

Microsoft’s vision and reason for creating this tool is self-service BI, allowing users to create their own cubes, data analysis environments and reporting systems. And this is where I start to have a problem…

I can’t remember the last time I designed a data warehouse, where I did not find significant data quality problems, conflicting data, missing data, duplicated data etc.. I also find it hard to think of a situation where an end user (even a power user) is sufficiently clued up about the intricacies of a source OLTP database to be able to extract the right data and know what to do with it. Or if they are, a dozen other people in different departments have a different idea about how things work, resulting in many different versions of the truth.

I’m therefore (for now!) sticking with the opinion that it is still absolutely vital for an organisation to provide a clean, consistent, dimensionally modelled data warehouse as the basis for their BI/MI infrastructure. Tools like PowerPivot then sit very nicely on top to provide an incredibly powerful and beneficial user experience, but to try and use the emergence of self-service BI tools to usher in a new ‘non-data warehouse’ era is a very dangerous route which I hope people will avoid.

In summary – this release brings with it a fantastic host of new tools, but with great power comes great responsibility…

Power BI Sentinel
The Frog Blog

Team Purple Frog specialise in designing and implementing Microsoft Data Analytics solutions, including Data Warehouses, Cubes, SQL Server, SSIS, ADF, SSAS, Power BI, MDX, DAX, Machine Learning and more.

This is a collection of thoughts, ramblings and ideas that we think would be useful to share.


Alex Whittles
Jeet Kainth
Jon Fletcher
Nick Edwards
Joe Billingham
Lewis Prince
Reiss McSporran
Microsoft Gold Partner

Data Platform MVP

Power BI Sentinel
Frog Blog Out