0845 643 64 63

SSAS Tabular performance – DefaultSegmentRowCount

I’m currently investigating a poorly performing Tabular model, and came across some interesting test results which seem to contradict the advice in Microsoft’s Performance Tuning of Tabular Models white paper.

Some background:

  • 7.6Gb SSAS tabular cube, running on a 2 x CPU 32 core (Xeon E5-2650 2Ghz, 2 x NUMA nodes) server with 144Gb RAM
  • SQL Server 2012 SP1 CU7 Enterprise
  • 167m rows of data in primary fact
  • 80m distinct CustomerKey values in primary fact
  • No cube partitioning

A simple distinct count in DAX of the CustomerKey, with no filtering, is taking 42 seconds on a cold cache. Far too slow for a tabular model. Hence the investigation.

p88 of the Performance Tuning of Tabular Models white paper discusses the DefaultSegmentRowCount, explaining that it defaults to 8m, and that there should be a correlation between the number of cores and the number of segments. [The number of segments calculated as the number of rows divided by the segment size].

It also indicates that a higher segment size may increase compression, and consequently query performance.

Calculating the number of segments for our data set, gives us the following options:

Rows 167,000,000
Segment Size # Segments
1048576 169
2097152 80
4194304 40
[default] 8388608 20
16777216 10
33554432 5
67108864 3

So, with 32 cores to play with, we should be looking at the default segment size (8m) or maybe reduce it to 4m to get 40 segments. But the extra compression with 16m segment size may be of benefit. So I ran some timing tests on the distinct count measure, and the results are quite interesting.

DefaultSegmentRowSize

It clearly shows that in this environment, reducing the DefaultSegmentRowSize property down to 2m improved the query performance (on a cold cache) from 42s down to 27s – 36% improvement. As well as this, processing time was reduced, as was compression.

This setting creates 80 segments, 2.5 times the number of cores available, but achieved the best performance. Note that the server’s ProcessingTimeboxSecPerMRow setting has been set to 0 to allow for maximum compression.

There’s more to this systems’s performance problems than just this, NUMA for a start, but thought I’d throw this out there in case anyone else is blindly following the performance tuning white paper without doing your own experimentation.

Each environment, data set and server spec is different, so if you need to eek out the last ounce of performance, run your own tests on the SSAS settings and see for yourself.

Frog-Blog Out

[Update: Follow up post exploring the performance impact of NUMA on this server]

17 Responses to SSAS Tabular performance – DefaultSegmentRowCount

Leave a Reply

Your email address will not be published. Required fields are marked *

HTML tags are not allowed.

368,158 Spambots Blocked by Simple Comments

Power BI Sentinel
The Frog Blog

Team Purple Frog specialise in designing and implementing Microsoft Data Analytics solutions, including Data Warehouses, Cubes, SQL Server, SSIS, ADF, SSAS, Power BI, MDX, DAX, Machine Learning and more.

This is a collection of thoughts, ramblings and ideas that we think would be useful to share.

Authors:

Alex Whittles
(MVP)
Reiss McSporran
Jeet Kainth
Jon Fletcher
Nick Edwards
Liam McGrath

Data Platform MVP

Power BI Sentinel
Frog Blog Out
twitter
rssicon