0845 643 64 63

Monthly Archives: February 2011

Speed up SSIS by using a slower query

This isn’t a technical blog post of my own, but a shout out to Rob Farley and an excellent blog post explaining how to use SQL’s OPTION (FAST x) hint. He explains how you can speed up an SSIS data flow by slowing down the source query. It may seem illogical at first, but you’ll understand after you go and read Rob’s post!

Read Rob’s post here: Speeding up SSIS using OPTION (FAST)

Debug MDX queries using Drillthrough in SSMS

One of the great features of using Excel to browse an SSAS OLAP cube is the drillthrough ability. If you double click on any cell of an OLAP pivot table, Excel will create a new worksheet containing the top 1000 fact records that went to make up the figure in the selected cell.

N.B. The limit of 1000 rows can be altered, as per one of my previous blog posts here.

This feature is pretty well known, but not many folk realise how easy it is to reproduce this in SQL Server Management Studio (SSMS). All you need to do is prefix your query with DRILLTHROUGH.

i.e. Assuming an MDX query of

SELECT [Measures].[Internet Sales Amount] ON 0
FROM [Adventure Works]
WHERE [Date].[January 1, 2004]

Which returns the following results…

A query of

DRILLTHROUGH
SELECT [Measures].[Internet Sales Amount] ON 0
FROM [Adventure Works]
WHERE [Date].[January 1, 2004]

Returns the records contributing to the total figure. Great for diagnosing problems with an MDX query.

By default, only the first 10,000 rows are returned, but you can override this using MAXROWS

DRILLTHROUGH MAXROWS 500
SELECT [Measures].[Internet Sales Amount] ON 0
FROM [Adventure Works]
WHERE [Date].[January 1, 2004]

The columns that are returned are those defined in the Actions tab of the Cube Designer in BIDS (The Business Intelligence Development Studio).

If no action is defined, then the fact measures will be returned along with the keys that link to each relevant dimension, which tend not to be that helpful.

You can override the returned columns by using the RETURN clause

DRILLTHROUGH SELECT [Measures].[Internet Sales Amount] ON 0 FROM [Adventure Works] WHERE [Date].[January 1, 2004] RETURN [$Internet Sales Order Details].[Internet Sales Order] ,[$Sales Territory].[Sales Territory Region] ,NAME([$Product].[Product]) ,KEY([$Product].[Product]) ,UNIQUENAME([$Product].[Product]) ,[Internet Sales].[Internet Sales Amount] ,[Internet Sales].[Internet Order Quantity]


Note that there are some restrictions on what you can drill through

  • You can’t drill through an expression/calculation, only a raw measure
  • The MDX query needs to return a single cell (otherwise the cube does not know which one to drill through)
  • The data returned will be at the lowest granularity of the cube’s fact table

To explain the last point further, the cube does not return the raw data from the underlying data warehouse, but a summary of the facts grouped by unique combination of the relevant dimensions. i.e. if a warehouse table containing individual sales (by date, product, customer & store) is brought into a cube as a fact table that only has relationships with the date and product dimensions, then the cube drill through will return unique combinations of date and product, summarising sales for each combination. Extra granularity which the warehouse may contain (customer and store) will not be available.

Note that if you specify the RETURN columns, the rows are still returned at the lowest level of the fact table granularity, even if not all of the dimensions are brought out as columns. This may result in returning multiple identical records. Don’t worry, these will be distinct facts, just differentiated by a dimension/attribute that isn’t being returned.

You can find out more on TechNet here

Frog-Blog Out

The Frog Blog

I'm Alex Whittles.

I specialise in designing and implementing SQL Server business intelligence solutions, and this is my blog! Just a collection of thoughts, techniques and ramblings on SQL Server, Cubes, Data Warehouses, MDX, DAX and whatever else comes to mind.

Data Platform MVP

Frog Blog Out
twitter
rssicon